Toshiba Top Page Contact us

2012 VOL.67 NO.2

  Special Reports

Manufacturing Technologies Aiming for Top-Level Global Competitiveness

Toward Reconstruction of Manufacturing and Factory Operating Power
SUMIDA Satoshi

Toward Realizing Manufacturing Technologies with Top-Level Global Competitiveness
KUBO Tomoaki / SASAKI Kenji / MORI Ikuo
In order for Toshiba to become an even stronger global contender, the ability to introduce products meeting the needs of the global market with competitive cost and speed is required.
We are promoting the strengthening of our manufacturing technologies through three schemes: (1) design for manufacturability (DFM) taking product cost into consideration in the planning and design phases, (2) manufacturing engineering to design productivity in the production preparation phase, and (3) manufacturing control to extract the maximum capabilities of production lines at the production stage. The results achieved through these activities include product downsizing by the application of new manufacturing methods, clarification of critical control parameters using technology computer-aided design (TCAD) simulation techniques, strengthening of production line design verification through the use of simulation tools, and improvement of machining efficiency by the modeling of processes.

Electromagnetic Shielding Technologies for Semiconductor Packages
ISHIDA Masaaki / YAMADA Keiju / YAMAZAKI Takashi
Electromagnetic noise generated in mobile devices such as cellular phones and smartphones is an important issue because it interferes with the built-in radio system. Mobile devices are therefore generally protected from such noise by metal plates. However, this metal plate shielding also hinders progress toward smaller and thinner designs, leading to demand for noise suppression technologies at the semiconductor package level rather than the use of metal plates.
Toshiba has been developing electromagnetic shielding technologies for semiconductor packages as a noise suppression method at the package level. These technologies, for the development of both shield design technologies and shield production processes, suppress electromagnetic radiation from packages and are expected to contribute to the realization of differentiated and high-value-added semiconductors.

DFM Evaluation Technique for Mechanical Units
GOTO Makoto / ADACHI Mitsuaki / HIRANO Koji
Products subject to advancing commoditization and price competition face a strong requirement to achieve a balance between performance and quality on the one hand, and low cost on the other. An approach based on design for manufacturability (DFM) considering production constraints and ease of manufacturing is important to attain the required performance at low cost. However, it is difficult for engineers to realize the design optimization of parts and products taking production constraints into consideration.
In response to this situation, Toshiba has developed a DFM evaluation technique that can predict and visualize variations in performance and cost in relation to the dimensional tolerance of components for mechanical units. We have confirmed the effectiveness of this technique by applying it to a rotary compressor for air conditioners.

Process Design Method for Semiconductor Devices Utilizing TCAD Topography Simulation Techniques
NISHITANI Kazuhito / ISHIKAWA Satoshi / SUZUKI Keiji
Due to the shrinkage of design rules for semiconductor devices, the yield and quality of devices are more vulnerable to variations in their electrical characteristics resulting from the fluctuation of processed sizes. The prediction of size fluctuations and optimization of process design in the development phase are therefore important issues for the construction of a mass-production line to realize high-yield and high-quality product manufacturing.
Toshiba has developed a novel method to predict size fluctuations in manufacturing processes using technology computer-aided design (TCAD) topography simulation techniques. This method improves the process capability early in the development phase by modeling the relationship between processes and processed sizes and identifying critical processes causing size fluctuations. Furthermore, this method minimizes losses of yield and quality caused by insufficient process margins in mass production.

Enhanced Development of Manufacturing Equipment by Use of 3D CAD Data
TAKABAYASHI Hironori / OISHI Yasushi / MIYAUCHI Takashi
Various challenges are being encountered in the manufacturing of home appliances and digital devices, including the shortening of development periods and rapid expansion of global production. In response to this situation, both the reduction of development lead times and global deployment of manufacturing equipment are required.
In order to accelerate the shortening of product development cycles and the realization of global production, Toshiba has been engaged in the development of manufacturing equipment using three-dimensional computer-aided design (3D CAD) in each development process from simulation and design to machining, assembly, debugging, and maintenance. Furthermore, as 3D CAD facilitates communication with overseas engineers, we are promoting more effective use of global resources such as human resources and facilities required for the development of manufacturing equipment.

Production Line Design Utilizing Manufacturing Engineering Tools
Accompanying the ongoing globalization of manufacturing industries in recent years, the number of overseas manufacturing bases has been increasing to enhance the capacity to supply large emerging markets. For the effective introduction and operation of high-performance production lines in these overseas manufacturing bases, it is necessary not only to adequately control production lines in the field, but also to optimize the design of production lines prior to the commencement of mass production.
As a solution to this issue, Toshiba is engaged in the development of manufacturing engineering tools that make it possible to realize high-precision design of the manufacturing process and production line at the initial stage of the product design phase. We have developed a manufacturing technology that allows engineers to identify production problems in advance and to take effective countermeasures through various simulation tools including digital mockup (DMU) tools and assembly operation simulation tools.

Quantification of Phenomena in Metal Cutting Processes and High-Efficiency Cutting Technologies
KOJIMA Akira / KOIKE Eijiro / SATO Eiji
In the field of social infrastructure products including steam turbines, electric power generators, and motors, metal cutting technologies offering higher performance and higher efficiency are required both to maintain high quality and to reduce manufacturing lead times and costs. In order to efficiently improve a manufacturing process, it is necessary to perform sufficient analysis of phenomena in the metal cutting processes and to develop optimal machining conditions, tools, jigs, and other equipment based on this analysis.
Toshiba has developed monitoring and simulation technologies to quantitatively evaluate phenomena in metal cutting processes. Utilizing the results obtained, we have been applying high-precision and high-efficiency metal cutting technologies at our production sites.


  Feature Articles

Remote Power Control of Networked Appliances Using Ultralow-Power Wireless Wakeup Receiver IC
ISHIHARA Takeshi / OYAMA Yuichiro / MURAKAMI Takaomi
Electronic appliances with remote control functions conventionally consume a small amount of electric power in the standby state even when they are turned off, and it is difficult to achieve a balance between the reduction of power consumption and usability.
Toshiba has developed an ultralow-power wireless wakeup receiver integrated circuit (IC) that has a standby current of only 15 µA. We have applied this IC to networked appliances such as in-home contents sharing systems with remote power control that are only in operation when processing requests from other devices, and confirmed that it realizes a reduction in power consumption of about 30% in the total system. We have also confirmed that this IC can coexist with other wireless LAN systems and home appliances emitting radio waves.

KapellmeisterTM Communication Management System for Software Development Projects
BABA Shigeo / ITO Yuko / KOYAMA Kiwako
Problems caused by miscommunications among developers or inadequate discussions about specifications in upstream processes often occur during software development, resulting in bugs that require a great deal of time and money to eliminate. On the other hand, there is a tendency for developers to spend increasing amounts of time in communication. The management of smoother communications among developers is therefore a key to the success of software development projects.
Toshiba has developed KapellmeisterTM, a communication management system for software development projects, equipped with functions that make it possible to reduce miscommunications in the product development process and distribute information among developers more efficiently. KapellmeisterTM is now being applied to the development of our digital products including digital televisions and recorders, as well as to part of our power generation systems.

Thermal Print Head with High Coloration Efficiency
OBA Masato / YAMAGAMI Nobuharu / MUYA Yoshinori
The thermal print head is a key component of various types of thermal printers including barcode label printers and digital photo printers. Demand has been growing in recent years for improvement of energy saving in thermal printers.
To meet this demand, Toshiba has developed a new thermal print head with high coloration efficiency that offers significantly improved fundamental performance such as high-speed printing, long lifetime, and high printing quality in addition to energy saving, by optimizing the temperature distribution of the heating elements.

Phosphors with High Efficiency, High Color Rendering, and High Reliability for Various White LED Applications
In recent years, there has been rapid growth in the market for white light-emitting diodes (LEDs) featuring higher energy-saving performance, higher efficiency, and longer lifetime compared with conventional light sources, for use as illumination light sources as well as backlights for liquid crystal display (LCD) televisions, smartphones, and tablet PCs. Among the various types of white LEDs, while the type composed of a blue LED and yellow-emitting phosphors is the mainstream, those incorporating green-emitting and/or red-emitting phosphors are also used for improvement of color quality depending on the intended application. With the expansion of the market for white LEDs, a range of fluorescent substances corresponding to various demand characteristics is also required.
In response to the market demand, Toshiba Materials Co., Ltd. has developed various phosphors with high efficiency, high color rendering, high reliability, and low cost appropriate for white LED applications.

1 kW-Class GaN Solid-State Power Amplifier for 5 GHz-Band Weather Radar Systems
ASAHI Yasuaki / KANTO Kazuhiro / MASUDA Kazutoshi
Toshiba has developed a compact and lightweight 1 kW-class solid-state power amplifier (SSPA) for 5 GHz-band weather radar systems utilizing a low-loss miniature 8-way combiner with 160 W-class gallium nitride high electron mobility transistors (GaN HEMTs) developed for the C-band (4-8 GHz) frequency range used in earth stations for microwave satellite communication (SATCOM), radar systems, and other applications.
The newly developed SSPA is about half the overall size and weight of conventional power amplifiers using gallium arsenide field-effect transistors (GaAs FETs), and allows the occupied frequency bandwidth to be narrower due to its excellent spurious signal suppression performance, resulting in efficient use of frequency resources.


  Frontiers of  Research & Development

Linux Kernel Compatibility Testing Technology for Long-Term Stable Operation
"BigData" Analysis Technology to Improve Usability of Electric Vehicles

Terms and Conditions | Privacy Policy Copyright